DV2520 — ASSIGNMENT 1 — MATRIX MULT

Deadline 2011-09-21 09:00
Submission tarball including source, Makefile and report (in pdf)
uploaded to It’s Learning

1 Description

You will implement matrix multiplication in OpenCL. The only host transfers
allowed are once at the beginning to copy initial matrices into the device mem-
ory, and once at the end to retrieve results. Your code must handle arbitrary
sized matrices, although you can assume that all matrices used will be square.

For the purposes of timing your code you will calculating powers of matrices.
You should not use anything sophisticated for calculating the power (such as
a square-multiply algorithm) as you will be calculating the performance of the
multiply routine, not the wrapper around it.

1.1 Terminology

You will use two separate transformations of the kernel in your profiling exper-
iments.

Splitting will convert the execution of a single kernel into a set of kernel ex-
ecutions. This corrosponds to splitting part of the problem into smaller
pieces. The result calculated by each thread in the original unsplit version
will be calculated by threads in several kernels. You will need a way to
combine the set of results into the single result, taking synchronisation
into account.

Tiling will merge several threads within a single kernel into thread. This re-
duces the parallelism, but increases the CGMA ratio. When you convert
a kernel into = by y sized tiles, a set of zy threads in the original will be
replaced by a single thread that outputs x x y results.

2 Grading

Pass - 3 Write a program that caclulates matrix multiplication in OpenCL.
Your program should accept the size of the matrix and the exponent as
parameters (either on the command line or as preprocessor defines) and
should compute M® as M -M-... M. The result should be verified against
a CPU implementation and the time per multiplication should be output
to the console.

Pass - 4 Implement a simple splitting of the multiplication kernel, that is, split
the inner product in every cell (r,c¢) : Zi:OHN Zrq - Yi,c into T' separate



pieces and accumulate the T' partial results into the solution. Your kernels
will need to be scheduled using wait events to guarantee they are executed
in the correct order. As part of your submission generate a graph of the
tiling performance for a particular matrix size (ensure the graph is in .pdf
format).

Pass - 5 Implement a tiling of the multiplication across two dimensions. As
well as splitting the sum of partial products into pieces, you will combine
the evaluation of several cells into a single kernel (i.e computing a square
of (r,c) elements inside each kernel). Evaluate the tiling across a range
of parameters and find the optimal splitting and tiling for N = 256 and
N =512.

3 Submission

You must submit your source-code in a tarball through It’s Learning. For a
grade 4 include a (maximum) one-page report that includes a graph of the
performance vs matrix size. For a grade 5 include a (maximum) two-page report
that include the single graph above and further graphs to show the trade-off
between the tiling and splitting transformations.

In your reports include descriptions of:

e How you selected parameterisation within the ranges for tests.
e How you performed the measurements.

e How you would quantify your confidence in your result.

4 Notes

Do not try and implement a sophisticated matrix multiplication algorithm: you
are being evaluated on how you can apply tiling as a technique for improving
performance. The simple naive matrix mutliplication with O(n?) is the one you
should implement. This is the straight-forward way to calculate:

N
Rr.e = E Tri - Yic
7

For timing use the RDTSC macros that are supplied in class.

For graphing you may use whichever software that you want (as long as the
graphs are readable and in .pdf format). However, even if you have not used
it before installing and using gnuplot will save you a lot of time and effort.



